Introduction to Testing (part 1)
slide: http://bit.do/pymalta-tdd

http://bit.do/pymalta-tdd

Agenda

Intro to Test Driven Development (TDD)
TDD Flow

F.I.R.S.T principles

Mocking

Interlude

Practical

Test Driven Development (TDD)

What is TDD ?

A software development process that relies on the
repetition of a very short development cycle:
requirements are turned into very specific test cases,
then the software is improved to pass the new tests.

Short history

Credited to Kent Beck for “rediscovering” TDD in the
2003, a prototype of TDD dates back to the early
days of computing in the 1960s.

Short history

During the mainframe era, when programmers had
limited time with the machine, a documented
practice was to write the expected output before
entering the punch cards into the computer.

Then you could immediately see whether the results
you got from the mainframe were correct by
comparing the actual output with the expected
documented output.

>
-
O
o
D
L
afd
-
O
L
0p)

Why write tests ?

e Wwrite tests, so that we can assert that our code
runs correctly

e on every change, we re-run our tests to ensure
nothing breaks

e particularly after some time passes, making the
code easier to maintain

The TDD Flow

o write test, and run it to show unimplemented code
fails

e fix the code and re-run test to see it pass

e rerun all tests & refactor adjacent code

e and then repeat above...

Test specifications
Feature requirements

e |mplement a "“simple number class”

e The number should have an “add” method

e The number should have an "multiply” method

e The number should raise an exception if initialized
with invalid type

TDD Flow - diagram

(Start)

Write unit test

Run the test

Did test pass? Refactor code

Is the feature complete?

Feature complete

def ():

simple number = SimpleNumber(2)
assert simple number.add(2) ==

4

def ():
simple number = SimpleNumber(2)

assert simple number.add(2) 4

S pytest test simple number.py

FATILURES
test simple number add

():
simple number = SimpleNumber(2)
NameError: global name 'SimpleNumber' is not defined

test simple number.py:4: NameError

def

simple number = SimpleNumber(2)
assert simple number.add(2) ==

4

def ():
simple number = SimpleNumber(2)
assert simple number.add(2) ==

S pytest test simple number.py
[100%]

FATLURES
test simple number add

():
> simple number = SimpleNumber(2)
E TypeError: this constructor takes no arguments

test simple number.py:6: TypeError
1 failed in 0.03 seconds

class -
def (self, number):
self.x = number

def ():
simple number = SimpleNumber(2)
assert simple number.add(2) ==

4

class -
def (self, number):
self.x = number

def ():
simple number = SimpleNumber(2)

assert simple number.add(2) 4

S pytest test simple number.py -g

FATILURES
test simple number add

():
simple number = SimpleNumber(2)
assert simple number.add(2) ==
AttributeError: SimpleNumber instance has no attribute 'add

test simple number.py:7: AttributeError

class -
def (self, number):
self.x = number

def (self, y):

return self.x + vy

def ():
simple number = SimpleNumber(2)
assert simple number.add(2) ==

4

class -
def (self, number):
self.x = number

def (self, vy):
return self.x + vy

def ():
simple number = SimpleNumber(2)

assert simple number.add(2) 4

S pytest test simple number.py -9g

1 passed in 0.05 seconds

What's next ?

add failing test for multiply method
Implement the multiply method until test passes

rerun all tests

add failing test that expects an exception to be
raised if class initalized with a value other than a
number

Implement the type validation in class constructor
rerun all tests

TDD Flow - alt. diagram

CODE-DRIVEN TESTING REFACTORING

#1 \)c,oee Refactor
: The test fails. The test succeeds. 9,\99 some code.
(Re)write <@
the test. #5
Check
Write only 4 whether
The test enough code. all the tests
e succeed. #5'
succeeds. #3
Update the
‘ Some tests failing tests.
; fail.
‘ Correct

The test fails. regressions.

. " The code quality
satisfies.

lterate

focus _focus_

Completion of the contract
as defined by the test

Alignment of the design
with known needs

Xavier Pigeon
BY SA

.11

F.I.LR.S.T Principles

e [ast

e |ndependent
e Repeatable

e Self-Validating
e Timely

Fast

e Jests should run fast
e You should run tests frequently

Independent

e [ests should not depend on each other
e Order should not matter

Repeatable

e Environment should not matter
e Avoid flaky or brittle tests

Self-Validating

e Tests should either pass or fall
e Manual assertion should be avoided

Timely

e [ests should be written before the code

Mocking

What is mocking ?
A tool to aid in isolating our tests.

To make them: FAST, INDEPENDENT &
REPEATABLE

How does one mock ?

Replace (or monkeypatch) code that is outside of the
unit under test.

What should be mocked

e callables

e objects

e classes / interfaces

e global var / existing values

Basic example

Test specifications
Feature requirements

e |[mplement a "“simple number class”

e The number should have an “add” method

e The number should have an "multiply” method

e The number should raise an exception if initialized
with invalid type

e the result should be cached ina DB

The result should be saved to a DB for caching?

o Repeatable or flaky?

e Fast or slow?

e |ndependent or coupled?

o Self-validating or require manual assertion?

Mocking in python is easy with mock. patch:

from unittest.mock import patch

from simple number import SimpleNumber

with patch('simple number.DB') as mock db:
SimpleNumber(2).add(2)
mock db.assert called()

Mock specific attribute with mock.patch.object:

from unittest.mock import patch

from simple number import SimpleNumber, DB

@patch.object (DB, 'connect', return value='0OK')
def (mock connect):
simple number = SimpleNumber ()
assert simple number.connection statu
mock connect.assert called once with(host=' , port='1234")

Python's MagicMock

Amock.MagicMock is a special class that is used
by default to replace “patched” objects.

It works by replacing magic methods such as
__str__and _call__ and by default returns a
new mock.MagicMock when called, making call

chaining easy!

Python's MagicMock

split into 2 fragments

Amock.MagicMock is a special class that is used
by default to replace “patched” objects.

It works by patching magic methods such as
~str__and_call__ and by default returns a

new mock.MagicMock when called, making
chaining calls easy!

Chaining MagicMock objects:

from unittest.mock import patch
from simple number import SimpleNumber
@patch('simple number.DB')

def (mock db):
simple number = SimpleNumber(2)

db instance = mock db.return value # the return value of calli
db instance.connect.assert called once with(host="'host', port='

simple number.add(2)
db instance.set.assert called once with(key=2, value=2)

Testing is common

Let's take a break and look at some tests written in
different languages.

10. 1]

Cyber Dojo -go to

https://cyber-dojo.org/id_join/show?id=NUZNCm
or
http://bit.do/pymalta-tdd-dojo

https://cyber-dojo.org/id_join/show?id=NUZNCm
http://bit.do/pymalta-tdd-dojo

Scoring Bowling

144 |5 6 5 01| 7 6 2| M6
5 14 | 29 | 49 | 60 [61 | 77 | 97 | 117|133

The game consists of 10 frames as shown above. In each frame the player has
two opportunities to knock down 10 pins. The score for the frame is the total
number of pins knocked down, plus bonuses for strikes and spares.

A spare is when the player knocks down all 10 pins in two tries. The bonus for
that frame is the number of pins knocked down by the next roll. So in frame 3

above, the score is 10 (the total number knocked down) plus a bonus of 5 (the
number of pins knocked down on the next roll.)

A strike is when the player knocks down all 10 pins on his first try. The bonus
for that frame is the value of the next two balls rolled.

In the tenth frame a player who rolls a spare or strike is allowed to roll the extra
balls to complete the frame. However no more than three balls can be rolled in
tenth frame.

[source: Uncle Bob]

Olve Maudal TDD in C November 2007

Game

+roll(pins : int)
+score() : int

A quick design session

10

next frame

o

Frame

|

Tenth Frame

The score for a
spare or a strike
depends on the
frame’s successor

Roll
~ - pins :int

1.2

7
1

[source: Uncle Bob]

S
Thank you 2%
We've reached the end, my friends! Can't wait to see
the beautiful tests you will all write.

References

