
🔥 https://trailblaze.software/

Introduction to Web Scraping

In

PyMalta, 11th June 2019

https://trailblaze.software/

🔥 https://trailblaze.software/

My Details
● Simon Agius Muscat
● Freelance Software Engineering @ https://trailblaze.software/
● Available for:

○ Full-stack Web Development
○ Mobile Application Development
○ Prototype Development
○ Bespoke tech talks and workshops
○ Technical mentorship

● Software Engineer @ RightBrain http://rightbrain.com.mt/
● GitHub: https://github.com/purrcat259
● Twitter: https://twitter.com/purrcat259

https://trailblaze.software/
https://trailblaze.software/
http://rightbrain.com.mt/
https://github.com/purrcat259
https://twitter.com/purrcat259

🔥 https://trailblaze.software/

Before we start…
A Legal Disclaimer

I am not a lawyer
This is not legal advice

Scraping can exist in a legally grey area
Your use of scraping is your responsibility

https://trailblaze.software/

🔥 https://trailblaze.software/

Introduction to Web Scraping
Making Eggs from a Cake

https://trailblaze.software/

🔥 https://trailblaze.software/

The World Wide Web is data

https://trailblaze.software/

🔥 https://trailblaze.software/

Most of it is optimised for human
consumption

https://trailblaze.software/

🔥 https://trailblaze.software/

https://news.ycombinator.com/

https://trailblaze.software/
https://news.ycombinator.com/

🔥 https://trailblaze.software/

It is not always available for machine
consumption

https://trailblaze.software/

🔥 https://trailblaze.software/

https://hacker-news.firebaseio.com/v0/askstories.json?print=pretty

[
20141052,
20138189,
20138607,
20137475,
20123659,
20132561,
20137429,
20133806,
20138436,
20134221,
20118963,
20136555,
20136093,
20129998,
20137462,
...

https://hacker-news.firebaseio.com/v0/item/20141052.json

{
"by": "eterps",
"descendants": 1,
"id": 20141052,
"kids": [

20141071
],
"score": 2,
"time": 1560106131,
"title": "Ask HN: Favorite cross platform
lang/framework for command line apps?",
"type": "story"

}

https://trailblaze.software/
https://hacker-news.firebaseio.com/v0/askstories.json?print=pretty
https://hacker-news.firebaseio.com/v0/item/20141052.json

🔥 https://trailblaze.software/

Enter: Web Scraping

https://trailblaze.software/

🔥 https://trailblaze.software/

Reverse engineering the transformation
of the data in a database (or other
source) to the final view visible within the
browser when visiting a website

(My definition)

https://trailblaze.software/

🔥 https://trailblaze.software/

Normal Web Request

https://trailblaze.software/

🔥 https://trailblaze.software/

Web Scraping

https://trailblaze.software/

🔥 https://trailblaze.software/

Definitions

https://trailblaze.software/

🔥 https://trailblaze.software/

Definitions
1. Web: The World Wide Web, which is a method of delivering electronic

documents. Most people refer to this as the internet.

2. Web Scraping: Extraction of data from websites. This can be manual or

automated, both from an API or a website. For this talk, let us assume this

refers to the automated kind, where an API is not available

3. API: Application Programming Interface. A set of rules and methods

defining how two machines can interact with each other (typically referred to

as “I’ll send you some JSON”)

https://trailblaze.software/

🔥 https://trailblaze.software/

Website Basics
The boring bits you never find in a web dev tutorial

https://trailblaze.software/

🔥 https://trailblaze.software/

Sir Tim Berners
Lee

Invented the World Wide Web at
CERN

https://trailblaze.software/

🔥 https://trailblaze.software/

The WWW needed:

1. HTTP
a. HyperText Transfer Protocol
b. A standardised way for machines to have a

conversation about documents
2. HTML

a. HyperText Markup Language
b. A way to annotate documents with information beyond

the textual content

https://trailblaze.software/

🔥 https://trailblaze.software/

The Request Response cycle

Browser HTTP Request Server

Data

https://trailblaze.software/

🔥 https://trailblaze.software/

The Request Response cycle

Browser HTTP Response Server

Data

https://trailblaze.software/

🔥 https://trailblaze.software/

The Request
Response cycle

Browser HTTP Request Server

DB

example.com/employees

Process highly simplified

https://trailblaze.software/

🔥 https://trailblaze.software/

The Request
Response cycle

Browser HTTP Response Server

DB

Status Code 200

<html>

 <head></head>

 <body>

 <h1>Employees</h1>

Ken

Trent

Roberto

 </body>

</html>

Process highly simplified

https://trailblaze.software/

🔥 https://trailblaze.software/

Time to write a program to
do that process instead

We can start by making a simple HTTP request

https://trailblaze.software/

🔥 https://trailblaze.software/

Web Scraping

1. Scrape the content
a. Make a request, receive a

response

2. Parse the received content
a. Make sure we can make sense of

the data received depending on its
format

3. Extract relevant data from the
parsed content
a. Get only what we need out of what

we received

4. Store the relevant data in an
easier to use format
a. Such as in a CSV, a Database, etc

https://trailblaze.software/

🔥 https://trailblaze.software/

Web Scraping

1. Scrape the content
a. Make a request, receive a

response
2. Parse the received content

a. Make sure we can make sense of
the data received depending on its
format

3. Extract relevant data from the
parsed content
a. Get only what we need out of what

we received

4. Store the relevant data in an
easier to use format
a. Such as in a CSV, a Database, etc

https://trailblaze.software/

🔥 https://trailblaze.software/

HTTP Request

1. URL for the resource to be requested
a. http://www.example.com

2. A verb for the action being performed
a. GET, POST, PUT, etc

https://trailblaze.software/

🔥 https://trailblaze.software/

HTTP Response

1. Status Code, indicating success or not
a. 200, 404, 500, etc

2. Body, which is the returned data
a. In our case, we are expecting HTML

https://trailblaze.software/

🔥 https://trailblaze.software/

simple_request.py
import requests

url = 'http://info.cern.ch/hypertext/WWW/TheProject.html'

response = requests.get(url)

print(response.status_code)

print(response.text)

https://trailblaze.software/

🔥 https://trailblaze.software/

simple_request_to_file.py
import requests

url = 'http://info.cern.ch/hypertext/WWW/TheProject.html'

response = requests.get(url)

with open('first-website.html', 'w') as file:

 file.write(response.text)

https://trailblaze.software/

🔥 https://trailblaze.software/

Web Scraping

1. Scrape the content
a. Make a request, receive a

response

2. Parse the received content
a. Make sure we can make sense

of the data received depending
on its format

3. Extract relevant data from
the parsed content
a. Get only what we need out of

what we received
4. Store the relevant data in an

easier to use format
a. Such as in a CSV, a Database, etc

https://trailblaze.software/

🔥 https://trailblaze.software/

We have our data
Now we need to parse it

https://trailblaze.software/

🔥 https://trailblaze.software/

HTML
HyperText Markup Language

https://trailblaze.software/

🔥 https://trailblaze.software/

HTML
<html>

I think you should learn Python. It

is very easy to learn.

</html>

I think you should learn Python.

It is very easy to learn.

https://trailblaze.software/

🔥 https://trailblaze.software/

HTML

learn Python

very easy

I think you should learn Python.

It is very easy to learn.

<html>

I think you should learn Python. It

is very easy to learn.

</html>

learn Python

very easy

https://trailblaze.software/

🔥 https://trailblaze.software/

Notice how we can even parse hardcoded HTML strings!

from bs4 import BeautifulSoup

print('Parsing the following:')

html_document = '<html>I think you should learn Python. It is very easy to learn.</html>'

print(html_document)

simple_parse.py

https://trailblaze.software/

🔥 https://trailblaze.software/

First we feed our document into BeautifulSoup

soup = BeautifulSoup(html_document, 'html.parser')

Then we tell it to find all of the bold tags

bold_tags = soup.find_all('b')

print(bold_tags)

for bold_tag in bold_tags:

 # .text gives us the text inside the tags

 print(bold_tag.text)

simple_parse.py (continued)

https://trailblaze.software/

🔥 https://trailblaze.software/

Web Scraping

1. Scrape the content
a. Make a request, receive a

response

2. Parse the received content
a. Make sure we can make sense of

the data received depending on its
format

3. Extract relevant data from the
parsed content
a. Get only what we need out of what

we received

4. Store the relevant data in an
easier to use format
a. Such as in a CSV, a Database,

etc

https://trailblaze.software/

🔥 https://trailblaze.software/

The following program combines the following:

1. Send a request to https://news.ycombinator.com/
2. Parse the returned HTML for anchor tags (<a><a/>), also

known as hyperlinks
a. But only the anchor tags with the class storylink on them

3. Store the resulting hyperlinks in a text file, with a new link on
each line

https://trailblaze.software/
https://news.ycombinator.com/

🔥 https://trailblaze.software/

import requests

from bs4 import BeautifulSoup

url = 'https://news.ycombinator.com/'

print('Requesting...')

response = requests.get(url)

print('Parsing...')

soup = BeautifulSoup(response.text, 'html.parser')

story_links = soup.find_all('a', {'class': 'storylink'})

with open('story_links.txt', 'w') as file:

 for story_link in story_links:

 href = story_link.get('href')

 file.write('{}\n'.format(href))

print('Done!')

request_parse_store.py

https://trailblaze.software/

🔥 https://trailblaze.software/

Livecoding a Web Scraper
AKA, do GiG need a Barista? ☕

https://trailblaze.software/

🔥 https://trailblaze.software/

Responsible Web Scraping

https://trailblaze.software/

🔥 https://trailblaze.software/

Conclusion
This is a special talk for me...

https://trailblaze.software/

🔥 https://trailblaze.software/

Example Starter Projects
1. Retrieve products from supermarket websites

a. Try to match them together, to see which one is cheaper
b. Bonus challenge: Input your shopping list and export a list of which products to buy from

where

2. Animal shelter aggregator
a. Scrape names and photos from various animal shelter websites
b. Bonus challenge: Display them on one website, with backlinks and shelter contact details

3. Create a web crawler
a. This is a scraper which scrapes links, then follows those links to get more links
b. Bonus challenge: Find a way to visualise the contents of these pages

https://trailblaze.software/

🔥 https://trailblaze.software/

Thank you for listening 🙇

● This talk will be available in the coming days as a blog
post at:
○ https://blog.trailblaze.software

● Slides and talk recording will be available on the PyMalta
website and YouTube channel

● Feel free to come up after if you have any questions, want
me to clarify something or just to have a chat

https://trailblaze.software/
https://blog.trailblaze.software/

