
 REDIS

More than a KV store

Łukasz Dziedzia
@PyMalta 5.12.2017

hello!

My name is Łukasz Dziedzia

Software Development Manager @xcaliber_io
@ldziedzia

Why I talk about Redis?

✘ 90%+ developers I met use Redis

✘ Most of them uses Redis just as a caching backend

✘ Redis offers much more than that

✘ I got convinced to Redis on a “battlefield”

○ Redis is one of main components in XCaliber Gaming Platform

○ Responsible for many critical operations

○ 25k+ ops / sec

○ Minimal number of incidents

Goal of this presentation

✘ Introduce Redis

✘ Use cases (Gaming Platform context)

✘ Share lessons learned

Agenda

1. Redis overview

2. Data types

3. Programming with Redis

4. Administration (basics)

5. Lessons learned

1.

Redis Overview

What actually is this Redis thing?

About Redis

REmote DIctionary Server - data structures store

Open source project https://github.com/antirez (BSD license)

Created by Salvatore Sanfilippo (@antirez)

Started in 2009

https://github.com/antirez

Key Features

✘ Blazingly fast

✘ KV store

✘ Rich data types (strings, hashes, lists, sets, geo, bitmaps and more)

✘ Transactions

✘ Built-in replication

✘ Different levels of persistence

✘ Messaging

✘ High availability

✘ Clusterization

How to use it?

$ wget http://download.redis.io/releases/redis-4.0.2.tar.gz

$ tar xzf redis-4.0.2.tar.gz

$ cd redis-4.0.2

$ make

$ src/redis-server

$ src/redis-cli

http://try.redis.io/
https://pypi.python.org/pypi/redis

http://download.redis.io/releases/redis-4.0.2.tar.gz
http://try.redis.io/
https://pypi.python.org/pypi/redis

How Fast is Redis?

lukasz@XPLL017:~$ redis-benchmark -q -n 100000 -P 16

PING_INLINE: 1190476.25 requests per second

PING_BULK: 1666666.75 requests per second

SET: 943396.25 requests per second

GET: 1204819.38 requests per second

Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz

4 cores, 16GB RAM

Various benchmarks available, just to give an idea:

https://redis.io/topics/benchmarks

https://redis.io/topics/benchmarks

Why Redis is fast?

In-memory

Single threaded

Written in C

Redis Keyspace

16 databases (schemas) on one Redis server (see lessons learned)

✘ Manipulate keys: SET, GET, DEL, etc.

✘ Inspect keys with OBJECT and TYPE

✘ Expire keys with EXPIRE, EXPIREAT, PEXPIRE, etc.

✘ Navigate using: KEYS, SCAN, RANDOMKEY

2.

Redis Data types

Strings, Hashes, Lists, Sets, Sorted Sets, Spatial, HyperLogLogs,
Bitmaps

Strings

✘ Basic data type

✘ Binary safe

✘ Up to 512MB

✘ Support for operations on ints and floats (eg. INCRBY)

Use case: Cache. Set values under keys with TTL.

Python Redis

player_name = “Łukasz” SET player_name Łukasz

print(player_name) GET player_name

player_age = 32 SET player_age 32

player_age += 1 INCRBY player_age 1

len(player_name) STRLEN player_name

player_name[0:3] GETRANGE player_name 0 2

SETEX cache:key1 60 value

other commands: MSET, MGET, SETRANGE, INCR, DECR, INCRBYFLOAT, and more

Strings - API example

Hashes

✘ Maps string keys to string values

✘ Good for representing “objects” (eg. user instance)

✘ “Small” hashes are stored very efficiently

✘ Up to 2^32-1 keys

Use case: storing player’s data

Python Redis

player_1 = {“name”: “Łukasz”} HSET player:1 name Łukasz

player_1[“name”] HGET player:1 name

“name” in player_1 HEXISTS player:1 name

player_1.pop(“name”) HDEL player:1 name

player_1.update(age=32, country=”Poland”) HMSET player:1 age 32 country Poland

player_1.keys() HKEYS player:1

player_1.values() HVALS player:1

player.items() HGETALL player:1

other commands: HINCRBY, HINCRBYFLOAT, HLEN, HSTRLEN, HSCAN, HSETNX, HMGET

Hashes - API example

Lists

✘ Linked list

✘ Fast append, slower lookup by index

✘ Sequences of strings stored in insertion order

Use case: store latest winners

LPUSH winners '{"user": "user:1", "amount": 100}'

Lists - API example

other commands: LINSERT, LREM, LPOP, RPOP, RPUSH,
RPOPLPUSH, and more

LTRIM winners 0 4 # 5 elements

…

LRANGE winners 0 -1
1) "{\"user\": \"user:7\", \"amount\": 700}"
2) "{\"user\": \"user:6\", \"amount\": 600}"
3) "{\"user\": \"user:5\", \"amount\": 500}"
4) "{\"user\": \"user:4\", \"amount\": 400}"
5) "{\"user\": \"user:3\", \"amount\": 300}"

LLEN winners
5

Sets

✘ Unordered collections of strings

✘ Guarantees uniqueness

✘ Add, remove, check in O(1)

Use case: simple segmentation for fraud detection

Sets - API example

SISMEMBER players_deposited user:2
(integer) 1

SADD players_deposited user:1 user:2 user:3
(integer) 3

SCARD players_deposited
(integer) 3

SADD players_withdrew user:1 user:4
(integer) 2

SUNION players_deposited players_withdrew
1) "user:1"
2) "user:3"
3) "user:4"
4) "user:2"

SDIFFSTORE potential_bonus_abusers players_withdrew players_deposited
(integer) 1

SMEMBERS potential_bonus_abusers
1) "user:4"

Other commands:
SINTER, SDIFF, SINTERSTORE,
SUNIONSTORE, SMOVE, SPOP, SREM

Sorted Sets

✘ Ranked collections of strings

✘ Every item has an assigned float score

✘ Ordering happens on insertion, not request

✘ Like sets, they guarantee uniqueness

Use case: Leaderboard based on winnings.

Sorted Sets - API example

ZADD top_winners INCR 200 user:2
"200"

ZADD top_winners INCR 100 user:1
"100"

ZADD top_winners INCR 300 user:3
"300"

ZREVRANGE top_winners 0 -1 WITHSCORES
1) "user:3"
2) "300"
3) "user:2"
4) "200"
5) "user:1"
6) "100"

ZADD top_winners INCR 500 user:1
"600"

ZREVRANK top_winners user:1
(integer) 0

Other commands:
ZRANK, ZINCR, ZRANGE, ZREM, ZCARD,
ZSCORE, ZSCAN, ZRANGEBYLEX,
ZINTERSTORE, ZUNIONSTORE,
ZDIFFSTORE, and more...

HyperLogLog

✘ Probabilistic data structure

✘ Estimates unique elements count

✘ Uses up to 12KB memory

✘ < 1% error

Use case: store estimated total number of all game spins

PFADD all_spins spin:1
(integer) 1

PFADD all_spins spin:2
(integer) 1

PFCOUNT all_spins
(integer) 2

PFADD all_spins spin:1
(integer) 0

PFCOUNT all_spins
(integer) 2

other commands: PFMERGE

HyperLogLog - API example

Geospatial

✘ Basic geospatial lookups

✘ Implemented based on Sorted Sets

✘ Based on Geohash (https://en.wikipedia.org/wiki/Geohash)

Use case: players nearby Place your screenshot here

https://en.wikipedia.org/wiki/Geohash

GEOADD map 19.0584 49.8224 Bielsko-Biała
(integer) 1

GEOHASH map Bielsko-Biała
1) "u2ve3tvusb0"

GEOADD map 19.0238 50.2649 Katowice
(integer) 1

GEODIST map Katowice Bielsko-Biała km
"49.2798"

GEORADIUSBYMEMBER map Katowice 50 km WITHDIST
1) 1) "Katowice"
 2) "0.0000"
2) 1) "Bielsko-Bia\xc5\x82a"
 2) "49.2798"

Geospatial - API example

Other commands:
GEORADIUS, GEOPOS

Streams

http://antirez.com/news/114

✘ Sequence of data elements

✘ Represent infinite, “moving” (continuous) data

✘ Provide fixed offset

✘ Explorable with range queries

✘ Allow parallel publishers and consumers (consumer groups)

✘ Inspired by some Kafka concepts

✘ Planned to be backported to 4.0 end 2017

http://antirez.com/news/114

Streams - API example (current)

XADD winners MAXLEN 1000 * player user:1 amount 100
1511219499656-0

XADD winners MAXLEN 1000 * player user:2 amount 250
1511219509734-0

XRANGE winners - + COUNT 1
1) 1) 1511219499656-0
 2) 1) "player"
 2) "user:1"
 3) "amount"
 4) "100"

XRANGE winners 1511219499656 1511219499657 COUNT 2
1) 1) 1511219499656-0
 2) 1) "player"
 2) "user:1"
 3) "amount"
 4) "100"

Streams - API example (current)

producer consumer

XREAD BLOCK 0 STREAMS games_opened $

XADD games_opened * id starburst

1) 1) "games_opened"
 2) 1) 1) 1511221632858-0
 2) 1) "id"
 2) "starburst

(3.00s)

XREAD BLOCK 0 STREAMS games_opened 1511221632858-0

Redis Modules

Not enough?

✘ Redis can be extended with modules

✘ Exposed C API

✘ Existing library of modules (eg. NN, ML, Search)

https://redis.io/modules

https://redis.io/modules

Machine Learning and Redis

Model training:
➔ Apache Spark
➔ TensorFlow
➔ ….

So, you have your ML model, and what now?

Redis-ML!
➔ Linear regression
➔ Logistic regression
➔ Decision trees
➔ Matrix operations
On top of Redis features!

https://github.com/RedisLabsModules/redis-ml

https://github.com/RedisLabsModules/redis-ml

3.

Programming with Redis

Additional Redis constructs and popular Redis usages

Pipelining

Fact: By default each command is sent individually

Consequence: Cost of network traffic can be significant

Solution: pipelining

On a protocol level it’s implemented as sending commands separated

with \r\n.

redis_ = redis.Redis(...)
pipe = redis_.pipeline()
pipe.set(‘a’, 1)
pipe.set(‘b’, 2)
pipe.execute()

Transactions

Redis transactions guarantees:

1. Transaction is guaranteed to be executed without interruptions

from other clients.

2. All or none commands in group are executed.

Commands are executed despite the errors!

No rollback!

Transactions - API demo

MULTI
OK

GET x
(nil)

SET x 1
QUEUED

SCARD x
QUEUED

SET x 2
QUEUED

EXEC
1) OK
2) (error) WRONGTYPE Operation against a key holding the wrong kind of value
3) OK

GET x
"2"

Pub/Sub

“...senders of messages, called publishers, do not program the
messages to be sent directly to specific receivers, called subscribers.”

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Pub/Sub in Redis:
➔ Supports pattern matching
➔ Ignores keyspace numbers
➔ Client can receive single duplicated messages

https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Pub/Sub - API example

producer consumer

SUBSCRIBE winners:PL winners:MT

PUBLISH winners:DE user:2
(integer) 1

1) "message"
2) "winners:PL"
3) "user:1"

PUBLISH winners:PL user:1
(integer) 1

PUBLISH winners:MT user:3
(integer) 1

1) "message"
2) "winners:MT"
3) "user:3"

PSUBSCRIBE winners:*

Distributed Lock

Problem: mutually exclusive access to a shared resource in a distributed environment

Single instance solution: SET lock_name lock_id NX PX timeout_value

Redlock algorithm:
Mutual exclusion
Deadlock free
Fault tolerant

Controversy!
https://redis.io/topics/distlock
http://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
http://antirez.com/news/101

https://redis.io/topics/distlock
http://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
http://antirez.com/news/101

Lua Scripting

Redis allows to execute logic on the server

“Redis stored procedures”

Reduces amount of calls to Redis

HMSET player:1 real 100 bonus 200
OK

SCRIPT LOAD "return {redis.call('HGET', KEYS[1], 'real') + redis.call('HGET', KEYS[1], 'bonus')}"
"a238c6486c63d7f26e3204e1c7df0132429d38d7"

EVALSHA a238c6486c63d7f26e3204e1c7df0132429d38d7 1 player:1
1) (integer) 300

4.

Redis Administration

Brief overview on topics like persistence, security

Persistence

Options:

✘ No persistence

✘ RDB

○ Point-in-time

○ Every X seconds or Y changes

✘ AOF

○ Append only log

✘ RDB + AOF

Replication

✘ master-slave(s)

✘ non blocking on master

✘ almost non blocking on slave

✘ for performance and/or safety

slaveof 192.168.1.1 6379

Security

✘ Designed to be used in trusted environments

✘ Provides simple authentication (AUTH command)

✘ No data encryption

✘ Possibility to disable commands

Consider this prior to go live!

Monitoring

Use SLOWLOG to understand slowest operations

SLOWLOG GET 10

Use MONITOR while debugging

MONITOR

Use INFO to get general stats

INFO server | clients | memory | persistence | stats | replication | cpu | commandstats |

keyspace | cluster

5.

Lessons Learned

Don’t do my mistakes, son...

Keyspace

✘ Use database 0

○ Ignored by Pub/Sub

○ Does not work well with cluster

✘ Structure your keyspace:

○ Use prefixes for keys

○ Have index of prefixes

John123 ---> player:John123

Why:

○ Helps with scanning

○ Minimizes “WRONGTYPE Operation against a key holding the wrong kind of value.” errors.

Scanning

✘ Don’t do KEYS

✘ Use SCAN:

○ SCAN

○ HSCAN

○ SSCAN

○ ZSCAN

Operations

✘ Mind Big O notation

○ Most of commands provide this information

✘ Avoid fetching big collections

✘ Use pipelines if possible

✘ Use multi-key operations (eg. HMSET)

✘ Treat Redis as operational DB

Data

✘ Use hashes to group objects:

○ HSET player:1 name Łukasz instead of SET player:1:name

✘ Keep hashes small

✘ Expire keys if possible

Monitor

✘ Make SLOWLOG your friend

✘ Analyze your apps with MONITOR

✘ Mind number of connected clients:

○ echo "INFO" | redis-cli | grep connected_clients

thanks!

Questions?

You can find me at
@ldziedzia

lukasz.dziedzia@gmail.com

Links

https://redis.io/

http://oldblog.antirez.com/post/redis-persistence-demystified.html

https://dzone.com/articles/an-introduction-to-redis-ml-part-1

https://groups.google.com/forum/#!topic/redis-db/vS5wX8X4Cjg/discussion

Presentation template by SlidesCarnival

https://redis.io/
http://oldblog.antirez.com/post/redis-persistence-demystified.html
https://dzone.com/articles/an-introduction-to-redis-ml-part-1
https://groups.google.com/forum/#!topic/redis-db/vS5wX8X4Cjg/discussion
http://www.slidescarnival.com/ursula-free-presentation-template/804

